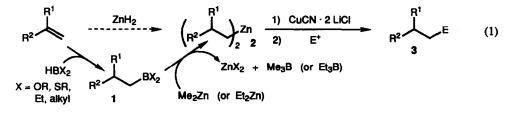
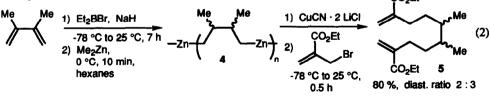
Preparation and Reactions of New Dialkylzincs Obtained by a Boron-Zinc Transmetalation.

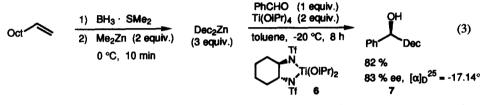

Falk Langer, Jack Waas and Paul Knochel *

Fachbereich Chemie der Philipps-Universität Marburg Hans-Meerwein-Straße, 35043 Marburg (Germany).

Summary


Various aliphatic organoboron derivatives were transmetalated to the corresponding dialkylzincs using diethyl- or dimethyl-zinc. This allows an access to zinc reagents not readily available by standard methods. Didecylzinc obtained by this method adds with good enantioselectivity (83 % ee) to PhCHO in the presence of catalytic amounts of (1R, 2R)-1,2-bis-(trifluorosulfonamido)cyclohexane.

Zinc organometallics have an excellent functional group tolerance and display a good reactivity toward electrophiles in the presence of Cu¹, Pd² or Ti³ catalysts. Most organozinc reagents are prepared by the direct insertion of zinc dust^{1,4} to organic halides or by an iodine-zinc exchange reaction⁵. Herein, we report our preliminary results for the preparation of new organozinc compounds using a boron-zinc transmetalation. Whereas this reaction has proven its utility for the synthesis of allylic⁶ or alkenyl⁷ zinc derivatives, it has not been applied to the preparation of *dialkylzincs*⁸. The B/Zn transmetalation would be of great synthetic utility since it would be equivalent to the hydrozincation of alkenes⁹ (eq. 1). Our first result shows that an alkylboronic pinacol ester such as 1a reacts with Et₂Zn (5 equiv., neat, 70 °C, 17 h) and produces, after distilling off the excess of Et₂Zn (0.1 mm Hg, 50 °C), pure Hex₂Zn. After a transmetalation to the corresponding copper species with CuCN · 2 LiCl¹, PhCOCl (0.7 equiv., 0 °C, 2 h) is added, leading



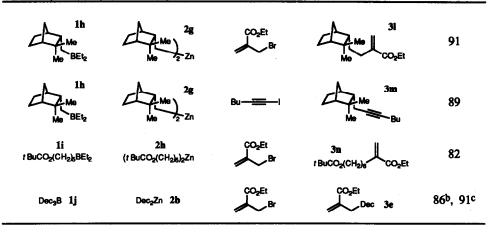
to the expected ketone 3a in 98 % yield (Table I). It was desirable to use milder reaction conditions for the B/Zn exchange and we found that dithiaborolanes¹⁰ like 1b-1d (Table I) react with Et₂Zn in hexane within 10 minutes at 0 °C. Some additional functionalities are tolerated in the boron derivatives (t BuS, TiPSO) and the corresponding copper reagents react in satisfactory yields with benzylideneacetone and ethyl α -(bromomethyl)acrylate (see 3b-d of Table I). Further, we found that diethylalkylboranes, which are readily prepared by hydroboration¹¹, undergo a fast transmetalation with Et₂Zn or Me₂Zn. The by-products are highly volatile boranes which are easily removed from the reaction mixture under vacuum. The method allows the conversion of readily available olefins such as (1S)-(-)- β -pinene, (R)-(+)-limonene or (+)-camphene to the valuable zinc reagents 2e-g. Their reaction with electrophiles such as an iodoalkyne (see 3h and 3m), 3-iodocyclohexenone¹² (see 3i and 3k), a nitroolefin (see 3j) or ethyl α -(bromomethyl)acrylate¹³

(see 31) proceeds in satisfactory yields after a transmetalation with $CuCN \cdot 2 LiCl^1$ (Table I). Also, the preparation of 1,n-dimetallic reagents is possible¹⁴. Thus, the hydroboration of 2,3-dimethylbutadiene with Et₂BH (-78 °C to 25 °C, 7 h) provides an intermediate 1,4-diboron derivative¹⁵ which after transmetalation with Me₂Zn (6 equiv.) smoothly produces the zinc dimetallic 4 (0 °C, 10 min). The allylation of 4 furnishes the bis-acrylate 5 in 80 % yield (diast. ratio: 2 : 3; eq. 2). CO_2Et

Interestingly, primary trialkylboranes also undergo a fast transmetalation in hexane with Et₂Zn or preferentially Me₂Zn (0 °C, 10 min). All the three alkyl groups are transfered from boron to zinc (Table I). Dialkylzincs prepared in this manner can be added enantioselectively to unsaturated aldehydes. Thus the reaction of Dec₂Zn (3 equiv.) with PhCHO (1 equiv) in the presence of (1R, 2R)-1,2-bis-(trifluorosulfonamido)-cyclohexane 6 (8 mol %)^{3,5a} and Ti(OiPr)₄ (2 equiv.) provides the benzylic alcohol 7 in 82 % yield and 83 % ee (eq. 3) determined by preparing the corresponding mandelate¹⁶.

In summary, we have shown that various aliphatic organoboron compounds undergo a transmetalation with Et_2Zn or Me_2Zn^{17} leading to dialkylzincs which are not always readily available by standard methods¹⁸. We are currently studying the stereochemistry of the transmetalation, its applications to the preparation of polymetallic zinc reagents and the use of the dialkylzincs obtained in asymmetric syntheses.

Acknowledgments


We thank the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft (SFB 260) for generous support and the Schering AG (Bergkamen) for the generous gift of chemicals.

References and Notes

- (a) Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem. 1988, 53, 2390; (b) Berk, S. C.; Knochel, P.; Yeh, M. C. P. J. Org. Chem. 1988, 53, 5789; (c) Majid, T. N.; Knochel, P. Tetrahedron Lett. 1990, 31, 4413; (d) Zhu, L.; Wehmeyer, R. M.; Rieke, R. D. J. Org. Chem. 1991, 56, 1445.
- (a) Negishi, E. Acc. Chem. Res. 1982, 15, 340; (b) Negishi, E.; Matsushita, H.; Kobayashi, M.; Rand, C. L. Tetrahedron Lett. 1983, 24, 3823; (c) Negishi, E.; Takahashi, T.; Baba, S.; Van Horn, D. E.; Okukado, N. J. Am. Chem. Soc. 1987, 109, 2393; (d) Negishi, E.; Owczarczyk, Z. Tetrahedron Lett. 1991, 32, 6683; (e) Tamaru, Y.; Ochiai, H.; Nakamura, T.; Yoshida, Z. Tetrahedron Lett. 1986, 27, 955;
- (a) Takahashi, H.; Kawakita, T.; Ohno, M.; Yoshioka, M.; Kobayashi, S. Tetrahedron. 1992, 48, 5691;
 (b) Duthaler, R. O.; Hafner, A. Chem. Rev. 1992, 92, 807; (c) Brieden, W.; Ostwald, R.; Knochel, P. Angew. Chem. 1993, 105, 629; ibid. Angew. Chem. Int. Ed. Engl. 1993, 32, 582.

Boron Reagent 1	Zinc Reagent 2	Electrophile	Product 3	Yield (%) ^a
Hex-B	Hex ₂ Zn 2a	PhCOCI	PhCOHex 3a	98
DecB	Dec ₂ Zn 2b	Ph Me	Ph Me	85
1c rBuS(CH ₂) ₃ -B	2c († BuS(CH ₂) ₃) ₂ Zn	CO ₂ Et Br	CO ₂ Et 3c (CH ₂) ₄ St Bu	78
	2d (TIPSO(CH ₂) ₅) ₂ Zn	CO ₂ Et Br	CO ₂ Et 3d (CH ₂) ₆ OTIPS	83
DecBEt ₂ 1e	Dec _z Zn 2b	CO ₂ Et Br	CO ₂ Et	75
DecBEt ₂ 1e	Dec ₂ Zn 2 b	ů,	3r Dec	81
DecBEt ₂ 1e	Dec ₂ Zn 2b	Bu	Bu Dec 3g	78
BEt ₂ If	22 22	Bu	Bu 3h	70
BEI2 If	2n 2e			75
Me 1g Me Hetz	Me 2f Me H	Ph NO2	Me 3j NO ₂ MeHPPh	97
Me 1g Me H	Me 2f Me H	ů,	Me 3k	94

Table I. Products Obtained by the Reaction of Dialkylzincs Prepared by a Bon	ron-Zinc Transmetalation
with Electrophiles in the Presence of CuCN · 2 LiCl.	

^{a)} Isolated yields of analytically pure products characterized by IR, ¹H and ¹³C-NMR, mass spectra and elementary analysis. ^{b)} B/Zn exchange performed with Et₂Zn. ^{c)} B/Zn exchange performed with Me₂Zn.

- 4. (a) Gaudemar, M. Bull. Soc. Chim. Fr. 1962, 974; (b) Tamaru, Y.; Ochiai, H.; Nakamura, T.; Tsubaki, K.; Yoshida, Z. Tetrahedron Lett. 1985, 26, 5559.
- (a) Rozema, M. J.; AchyuthaRao, S.; Knochel, P. J. Org. Chem. 1992, 57, 1956. (b) Tucker, C. E.; Majid, T. N.; Knochel, P. J. Am. Chem. Soc. 1992, 114, 3983.
- (a) Thiele, K.-H.; Zdunneck, P. J. Organomet. Chem. 1965, 4, 10; (b) Thiele, K.-H.; Engelhardt, G.; Köhler, J.; Arnstedt, M. J. Organomet. Chem. 1967, 9, 385.
- (a) Oppolzer, W.; Radinov, R. N. Helv. Chim. Acta. 1992, 75, 170; (b) Oppolzer, W.; Radinov, R. N. J. Am. Chem. Soc. 1993, 115, 1593; (c) Srebnik, M. Tetrahedron Lett. 1991, 32, 2449.
- Zakharkin, L. I.; Okhlobystin, O. Y. Z. Obsc. Chim. 1960, 30, 2134; engl. 2109; Chem. Abst. 1961, 55, 9319.
- 9. Dzhemilev, U. M.; Vostrikova, O. S.; Tolstikov, G. A. J. Organomet. Chem. 1986, 304, 17.
- 10. Thaisrivongs, S.; Wuest, J. D. J. Org. Chem. 1977, 42, 3243.
- (a) Pelter, A.; Rowe, K.; Sharrocks, K. N.; Smith, K.; Subrahmanayam, C. J. Chem. Soc., Dalton 1976, 2087. (b) Pelter, A.; Rowe, K.; Smith, K. J. Chem. Soc. Chem. Comm. 1975, 532.
- 12. Piers, E.; Nagakura, I. Synth. Commun. 1975, 5, 193.
- 13. Villiéras, J.; Rambaud, M. Synthesis 1982, 924.
- (a) AchyuthaRao, S.; Knochel, P. J. Org. Chem. 1991, 56, 4591; (b) Xiong, H.; Rieke, R. D. J. Org. Chem. 1989, 54, 3247.
- 15. Köster, R.; Griasnow, G.; Larbig, W.; Binger, P. Liebigs. Ann. Chem. 1964, 672, 1.
- 16. Parker, D. J. Chem. Soc., Perkin Trans. 1983, 2, 83.
- 17. Krug, R. C.; Tang, P. J. C. J. Am. Chem. Soc. 1954, 76, 2262
- 18. Typical procedure: Preparation of 3k (see Table I): A 25 mL Schlenk-flask equipped with a rubber septum was charged under argon with the borane 1g (522 mg, 2.53 mmol) in hexane (5 mL) and cooled to 0 °C. Me₂Zn¹⁶ (1.43 g, 1.48 mL, 15 mmol) was added at once via syringe and the solution was stirred at 0 °C for 10 min. The solvent, the excess Me₂Zn and the formed BMe₃ were pumped off carefully at 0 °C. The resulting zinc compound 2f was left at room temperature under vacuum for 1 h, dissolved in THF (5 mL) and cooled to -60 °C (liquid N₂/ether bath). CuCN (448 mg, 5.0 mmol) and LiCl (424 mg, 10.0 mmol) in THF (5 mL) were added slowly, leading to an orange solution. After warming up to 0 °C for 10 sec (affording a black solution) and cooling back to -60 °C, 3-iodocyclohexenone (495 mg, 2.23 mmol, 0.88 equiv.) was added. The reaction mixture was slowly warmed up to -10 °C within 2 h and worked up as usual. The crude product was purified by flash chromatography (hexanes/ether 19:1), yielding 3k (554 mg, 94 % yield) as a clear, colorless oil.